Water Use of Double Crops in Oklahoma

Tyson Ochsner and Chad Godsey
Plant and Soil Sciences
Oklahoma State University

Take home messages

- 1. Global agricultural demand is expected to increase, but soil and water resources are limited.
- 2. Our crops currently use only a fraction of the precipitation we receive.
- 3. Biological intensification may be a key strategy in increasing the efficiency and productivity of rain-fed agriculture.

You are here.

NASA Goddard Space Flight Center Image by Reto Stöckli (land surface, shallow water, clouds). Enhancements by Robert Simmon (ocean color, compositing, 3D globes, animation).

So are quite a few others.

And we're having lots of these.

Population projection

Projected increases in demand by 2050

• Cereals: up 55-80%

Meat: up 70-155%

Sugar, oil, vegetables, and fruit: up 70-110%

Bioenergy: up ?? %

Source: de Fraiture et al., 2010. Agricultural Water Management 97:495-501.

The challenge

- Produce more food, fiber, and energy
- Using existing land and water resources
- In an increasingly uncertain climate
- With fewer negative impacts on the environment.

Key question: How efficiently are we using our water resources?

Classifying our water resources

Adapted from Falkenmark and Lannerstad (2005).

Oklahoma's average water budget

	Positive	
<u>ltem</u>	Effects?	Size (in)
Precipitation: the renewable resource	+	34
Blue water: flow through the surface	+	7.6
water and groundwater systems		
Green water: transpiration through plants	+	7.9
White water: evaporation from the land	2	4.0.
surface (excluding transpiration)	?	18.5

Can we shift a portion of the flow from white water to green water through biological intensification?

Biological Intensification

- Is the process of intentionally increasing the number of species in an agricultural system
- Involves raising complementary species in beneficial arrangements and sequences
- Is pursued with the intent to
 - Increase agricultural land productivity
 - Conserve and improve the soil
 - Create positive off-site environmental impacts

Integrated crop-livestock systems

Cattle and winter wheat, KS http://flickr.com/photos/59526103@N00/137649071

Forage double cropping

Rye silage following corn silage, MN

Relay cropping

Soybean and winter wheat, NE http://cropwatch.unl.edu/archives/2003/crop03-23.htm

Living mulch

Corn and kura clover, WI

Lahoma Crop Rotation Experiment

- Pond Creek silt loam, 0-1% slope
- Average rainfall ~33"
- Soil moisture monitored in:
 - Conventional tillage (CT) wheat
 - No-till (NT) wheat
 - Double crop (DC) sorghum
 - Double crop (DC) soybean
 - Double crop (DC) sunflower
- Double crops followed by summer crops in 2010

Soil moisture measurements

 Weekly measurements with neutron probe

- Every 8", down to 6'
- Calibration incomplete

Data are preliminary

Rainfall

The summer of 2009 rainfall (11") was higher than average (9").

Evapotranspiration

Sorghum and soybean double crops had ~2" more ET than sunflower. No-till summer fallow had the lowest ET but still lost ~7" of water.

Plant Available Water

 the amount of soil moisture which is available for plant uptake

Plant available water

Available water in the soil was low at the start of the summer. Summer fallow stored only 1.5" to 2" of the 11" rainfall (15-20%).

Next steps

- Multiple years and locations
- Systems for monitoring plant available water
- Flexible,
 opportunistic,
 biologically intensified
 agricultural systems

Take home messages

- 1. Global agricultural demand is expected to increase, but soil and water resources are limited.
- 2. Our crops currently use only a fraction of the precipitation we receive.
- 3. Biological intensification may be a key strategy in increasing the efficiency and productivity of rain-fed agriculture.