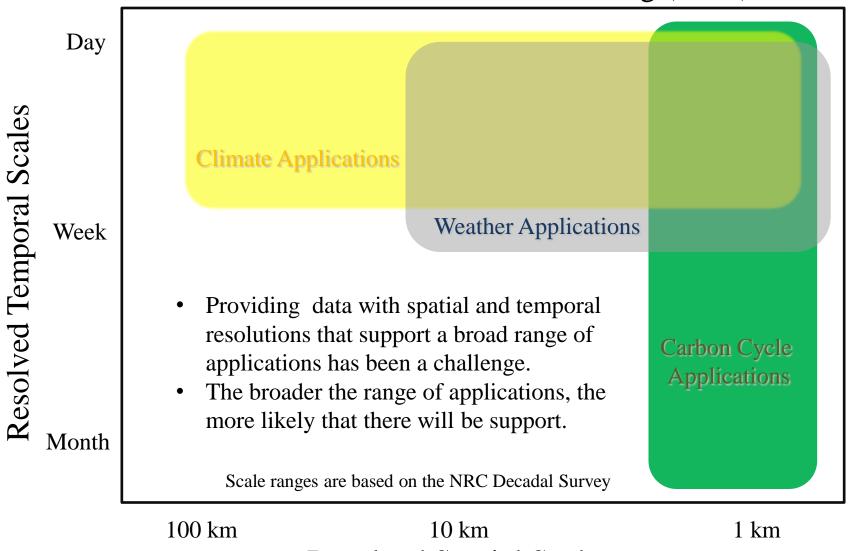
Soil Moisture Active Passive (SMAP)

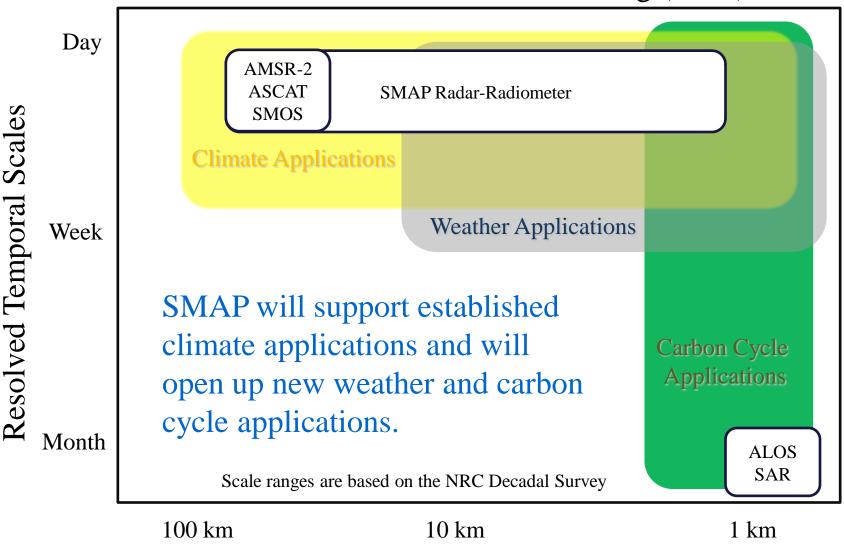
and Marena Oklahoma In Situ Sensor Testbed (MOISST)

Past, Present, and Future


Michael H. Cosh¹, Tyson E. Ochsner², Lynn McKee¹, Jingnuo Dong², Jeffrey Basara³, Steven R. Evett⁴, Christine Hatch⁵, Eric Small⁶, Susan Steele-Dunne⁷, Marek Zreda⁸

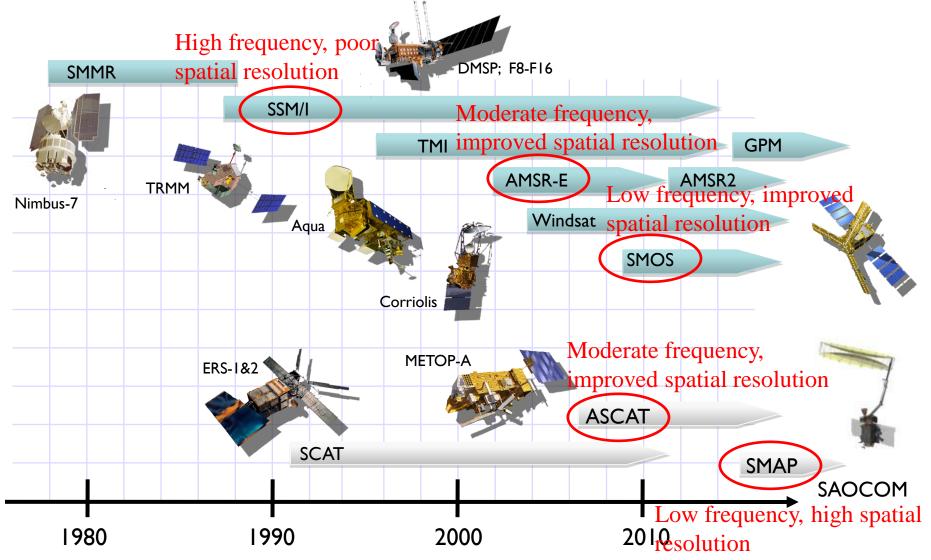
¹USDA-ARS-Hydrology and Remote Sensing Laboratory, Beltsville, MD
²Dept. of Plant and Soil Sciences, Oklahoma State University
³School of Meteorology, Oklahoma Climatological Survey ,University of Oklahoma
⁴USDA-ARS-Crop Production Research Laboratory
⁵Department of Geosciences, University of Massachusetts-Amherst, Amherst, MA
⁶Department of Geological Sciences, University of Colorado-Boulder
⁷Department of Civil Engineering and Geosciences, Delft University of Technology
⁸Department of Hydrology and Water Resources, University of Arizona

Evolution of Microwave Remote Sensing (Land)



Resolved Spatial Scales

Evolution of Microwave Remote Sensing (Land)



Resolved Spatial Scales

Soil Moisture Satellites and Sensors

Source: W. Wagner with some additions

SMAP Applications

NRC Earth Science Decadal Survey Report (Chapter 1):

"It is necessary now to build on the paradigm of Earth system science and strengthen its dual role of science and applications. This duality has always been an element of Earth science, but it must be leveraged more effectively than in the past".

Agricultural Productivity

Weather Forecasting

Flood Prediction

Human and Animal Health

SMAP measurements of soil moisture and freeze/thaw state address a wide range of Earth science applications

Famine Warning

Application requirements were assessed for spatial resolution, temporal frequency and accuracy.

Dust Storms

Trafficability

January 31st Launch

SMAP Launch: January 31, 2015

SMAP Products

Product	Description	Gridding (Resolution)	Latency**			
L1A_Radiometer	Radiometer Data in Time-Order	-	12 hrs			
L1A_Radar	Radar Data in Time-Order	-	12 hrs			
L1B_TB	Radiometer T_B in Time-Order	(36x47 km)	12 hrs	Instrument Data		
L1B_S0_LoRes	Low Resolution Radar σ_{o} in Time-Order	(5x30 km)	12 hrs	instrument Data		
L1C_S0_HiRes	High Resolution Radar σ_o in Half-Orbits	1 km (1-3 km)*	12 hrs			
L1C_TB	Radiometer T_B in Half-Orbits	36 km	12 hrs			
L2_SM_A	Soil Moisture (Radar)	3 km	24 hrs			
L2_SM_P	Soil Moisture (Radiometer)	36 km	24 hrs	Science Data (Half-Orbit)		
L2_SM_AP	Soil Moisture (Radar + Radiometer)	9 km	24 hrs			
L3_FT_A	Freeze/Thaw State (Radar)	3 km	50 hrs			
L3_SM_A	Soil Moisture (Radar)	3 km	50 hrs	Science Data		
L3_SM_P	Soil Moisture (Radiometer)	36 km	50 hrs	(Daily Composite)		
L3_SM_AP	Soil Moisture (Radar + Radiometer)	9 km	50 hrs			
L4_SM	Soil Moisture (Surface and Root Zone)	9 km	7 days	Science		
L4_C	Carbon Net Ecosystem Exchange (NEE)	9 km	14 days	Value-Added		

But how do you assess the quality of the data being produced.

Field Experiments

Modeling

In Situ Networks

USDA-Agricultural Research Service Soil Moisture Experiments

Washita 92/94 Oklahoma SGP97/99 *Oklahoma* SMEX02 *Iowa* SMEX03 Oklahoma Georgia

Alabama

SMEX04 Arizona Sonora, Mexico SMEX05 *Iowa*

NAFE05/6 SMAPEX *Australia* CLASIC07 *Oklahoma*

SMAPVEX08 Maryland CANEX-SM10 Saskatchewan Canada

SMAPVEX12 Winnipeg Canada SMAPVEX15 Arizona

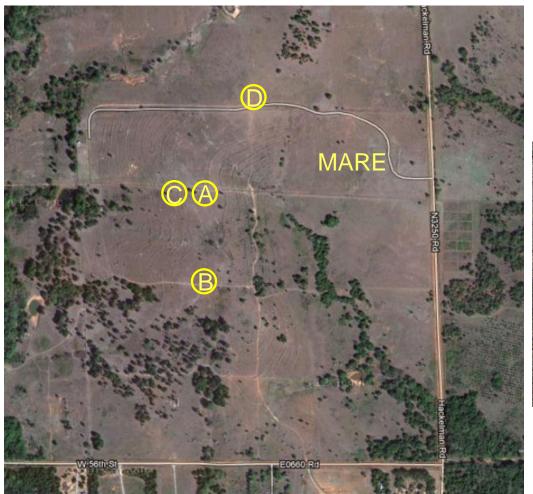
Soil Calibration

Every sensor can be calibrated to each specific soil to be installed in.

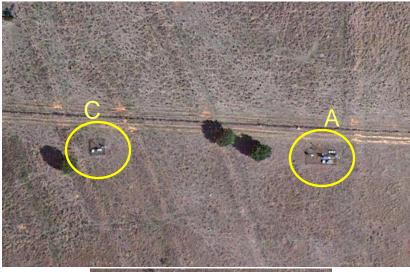
- Soil specific Calibration, in field or in lab with replication of soil bulk density
- Variety of soil moisture conditions necessary for accurate calibration.

Installation Scaling

Each installation should be scaled to determine how it represents the domain in which it is installed.

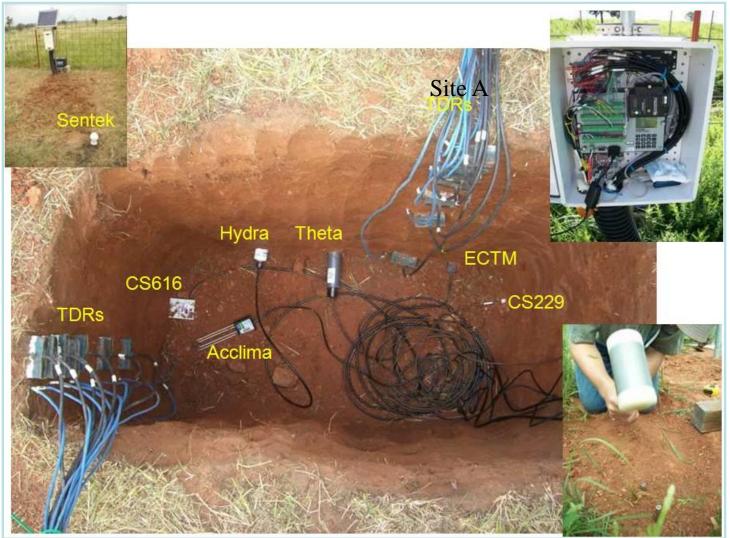

- Each installation or set of installations is one data series to be calibrated
- Scaling is against the satellite metric, 0-5 cm gravimetrically based volumetric soil moisture.

Marena Oklahoma In Situ Sensor Testbed MOISST

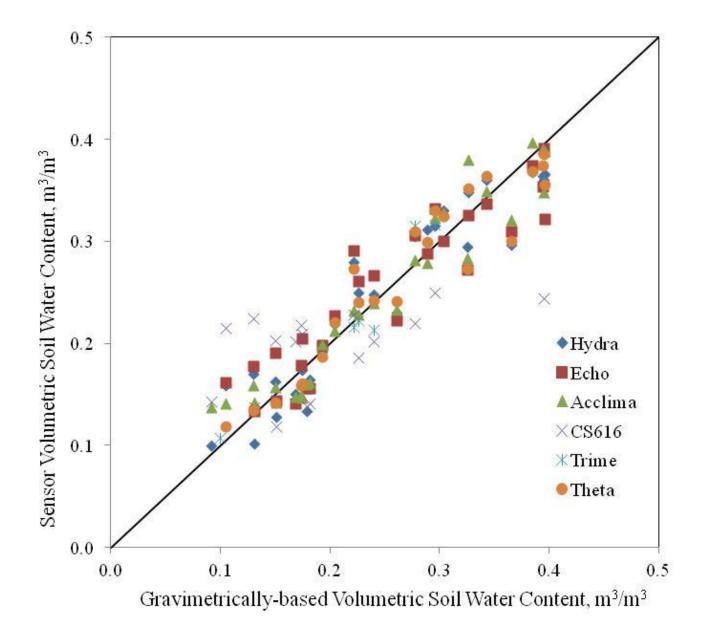


SMAP Marena Oklahoma In Situ Sensor Testbed Site Design

- Four Base Installations
- Common depths of 5, 10, 20, 50, 100 cm, with some sampling at 2.5 cm with Hydra.
- Base station sensors
 - Stevens Water Hydra Probes (6)
 - Delta-T Theta Probes (5)
 - Decagon EC-TM probes (5)
 - Sentek EnviroSMART Capacitance Probes (4)
 - Campbell CS615/CS616 TDRs (5)
 - CS 229-L heat dissipation sensors (OK Mesonet) (5)
 - Acclima Sensor (5)

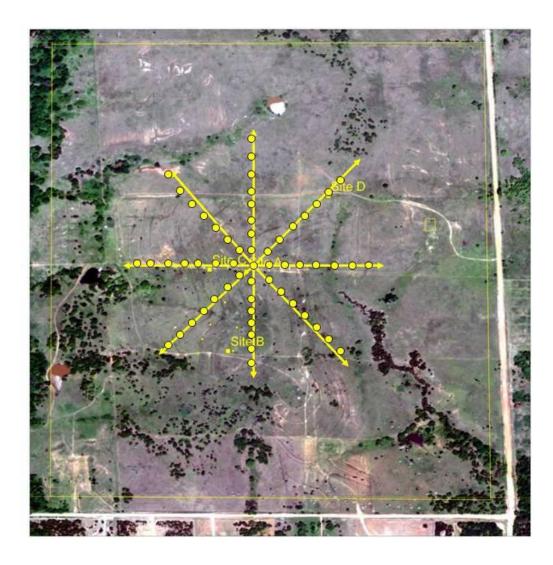

Site A	Site B	Site C	Site D
Base	Base	Base	Base
GPS	ASSH	GPS	GPS
COSMOS	Passive DTS		CRN
ASSH			
TDR systems			
Flux System			

SMAP Marena Oklahoma In Situ Sensor Testbed Installation


• Installation in May 2010

SMAP Marena Oklahoma In Situ Sensor Testbed Sensor Calibration

SMAP Marena Oklahoma In Situ Sensor Testbed Sensor Calibration

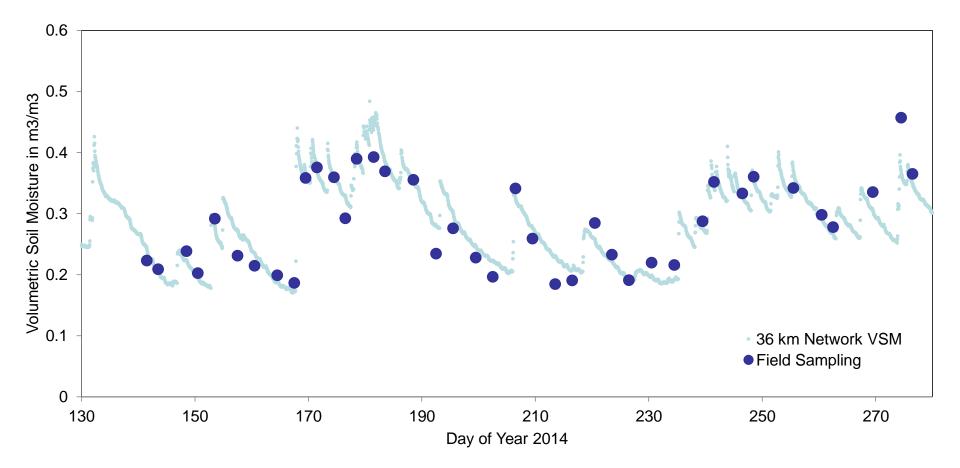


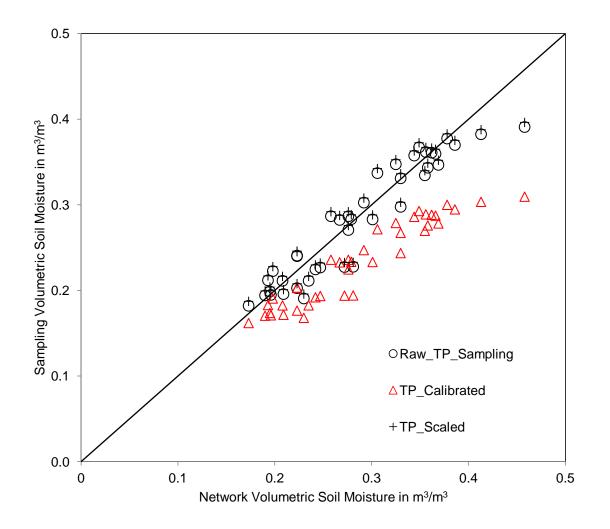
Sensor	Factory Listed Accuracy	Bias w/ factory calibratio n	RMSE factory calibration	RMSE soil specific calibration
Theta	0.01	0.014	0.030	0.028
Hydra	0.01-0.03	0.020	0.040	0.032
ECTM	0.03	0.076	0.081	0.036
CS-616	0.025	-0.023	0.073	0.063
Trime	0.01-0.03	0.005	0.042	0.023
Acclima	0.01	0.074	0.080	0.025
CS-229	N/A	-	-	-
Enviro-	N/A	-	-	-
SMART				

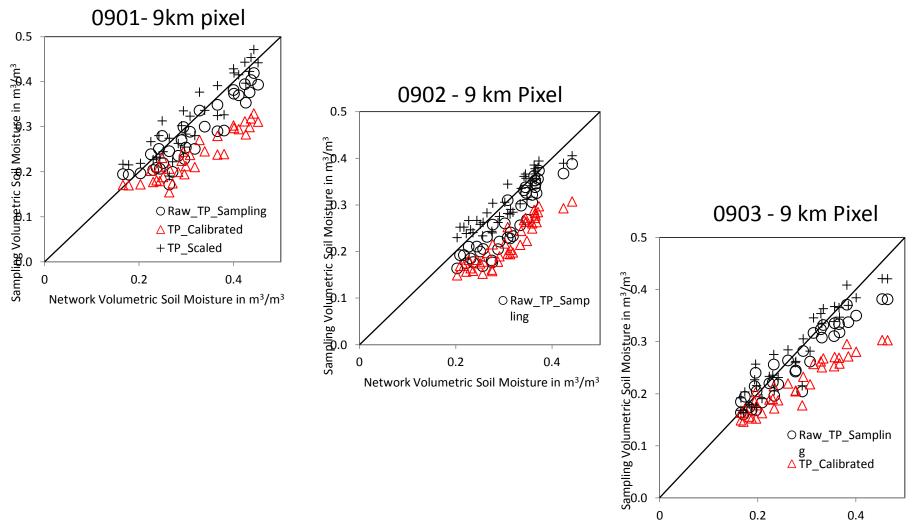
- Monthly Sampling
 - Vegetation Collection
 - Gravimetric Sampling
 - Theta Probe Sampling
- Intensive Observations
 - High Density Sampling
 - Soil Profiles

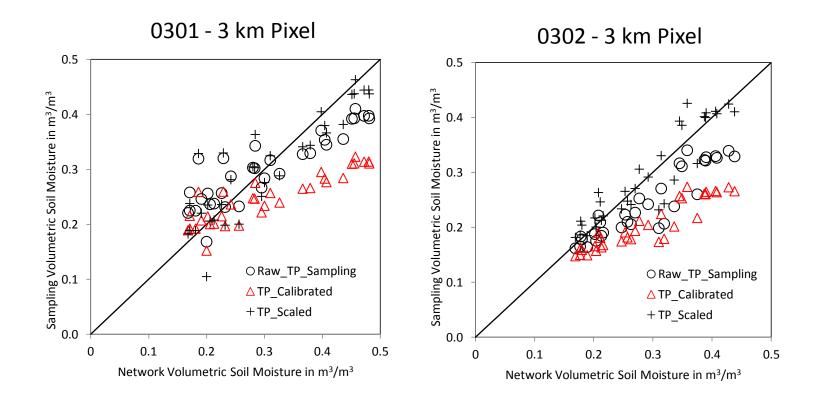
SMAP Marena Oklahoma In Situ Sensor Testbed Sensor to Sensor Average Comparison

		Uns	Scaled			Scaled		
Sensor	2.5 cm	5 cm	10 cm	Variable Depth	2.5 cm	5 cm	10 cm	Variable Depth
CS-616		0.110	0.140			0.036	0.046	
Hydra	0.048	0.062	0.079		0.021	0.035	0.047	
Theta		0.058	0.063			0.030	0.039	
Acclima		0.027	0.053			0.030	0.047	
Sentek			0.178				0.064	
ECTM		0.047	0.055			0.032	0.043	
Trime	0.083	0.085	0.110		0.026	0.032	0.042	
CS229		0.089	0.091			0.038	0.044	
TDR	0.020	0.045	0.070		0.013	0.039	0.053	
GPSR				→ 0.050			\longrightarrow	0.036
COSMOS				→ 0.048			>	0.035




- Installation practices and procedures should be standardized
- Calibration is critical for all sensors.
- Scaling (representativeness) also critical for all sensors.
- Raingage records are important for erroneous readings and troubleshooting.
- Accuracies of < 0.04 m³/m³ are achievable with a variety of sensors to field scales.
- Mixing of sensors within or between domains will cause variation at the fringes of the moisture conditions.


Extending in situ resources to the SMAP Cal/Val program

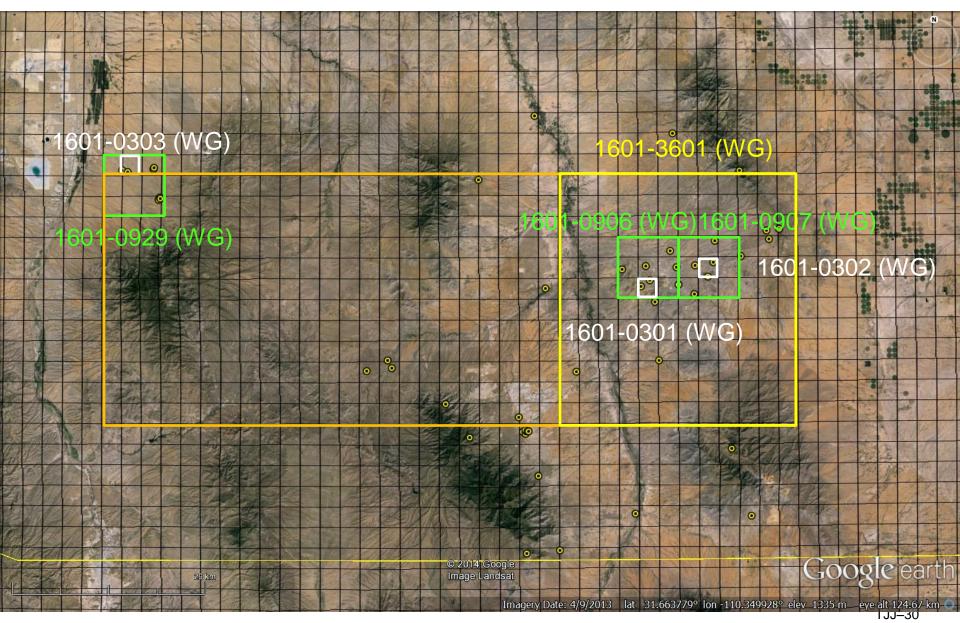


3601 - 36 km Pixel

Network Volumetric Soil Moisture in m³/m³

RMSEs	Raw TP	Calibrated TP	Scaled TP			
	in m³/m³	in m³/m³	in m³/m³			
3601	0.023	0.062	0.023			
0901	0.052	0.100	0.037			
0902	0.053	0.092	0.024			
0903	0.035	0.075	0.027			
0301	0.056	0.089	0.047			
0302	0.067	0.108	0.035			

									1								
RMSEs	Raw TP	Calibrated TP	Scaled TP		160-	7 26	01 10				32		a per per		-low		
	in m³/m³	in m³/m³	in m ³ /m ³			006	01 (\$			The second	1			Sou	th Fo	rk	
3601	0.023	0.062	0.023						20 19 19 19 19 19 19 19 19 19 19 19 19 19					HALL BE	The Restriction of		
0901	0.052	0.100	0.037		A Za	•										42	5
0902	0.053	0.092	0.024														
0903	0.035	0.075	0.027							1.5 4 5							
0301	0.056	0.089	0.047				•										
0302	0.067	0.108	0.035	· ···		1									THE REAL		11
	A CONTRACTOR			•				•									
					•		A L									1	
	Xall	1	607-0901	The second se	07-08	02(ତ୍ର F) ୀ	607-	0903 (SF)							
				• •	•	· •	200					X					
							- •		•								
				••••	•	0	%	•	•		A.		1				
			1607-030	ວ <mark>1 (S</mark> F)			160	<mark>3</mark> -030	2 (SF)								
	a la							1	•		-	1		12901		-	
				•	•												
			7 km									No.		Goo	oole	ear	th
		18.						Imagery D	ate: 6/11/2012	2 lat <u>42</u>	.481885°	lon -93.36	58157°_e	A Strength with the	2		


Next for SMAP

SMAPEX – Wagga Wagga, Australia

SMAPVEX15 – Upper San Pedro Basin, August 2015

SMAPVEX16-TBD

SMAPVEX15 (Aug 2-18)

