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•On-board sensing capabilities  
(soil moisture, temperature, salinity,) 

•Communication through soil 

•Real-time information about soil and 
crop conditions 

• Inter-connection of heterogeneous 
machinery and sensors 

•Complete autonomy on the field 

I. F. Akyildiz and E. P. Stuntebeck, “Wireless underground sensor networks: Research challenges,” Ad Hoc Networks Journal (Elsevier), vol. 4, pp. 669–686, 
July 2006. 

Infrastructure nodes 
Monitoring central 
Mobile sinks 

UG2AG Link 
AG2UG Link 

Monitoring nodes 

Cloud Comm. 

Taking Soil To The Cloud – Architecture 
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Underground Channel Modeling 
• WUSN models based on the analysis of the EM field and Friis 

equations [5][6][7] 

• Magnetic Induction (MI) based WUSNs [8][9] 
• Lack of insight into channel statistics (RMS delay, coherence 

BW) 
• No existing model captures effects of soil type and moisture on 

UG channel impulse response 
• Important to design tailored UG communication solutions 
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Soil As UG Communication Medium 

• Soil Texture and Bulk Density 
• Soil Moisture Variations 
• Distance and Depth 
• Frequency 
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Soil Texture and Bulk Density 9 

 Testbed Soils 



Soil Moisture Variations 
 • Complex permittivity 

of soil 
 
•Diffusion 

attenuation 
•Water absorption 

attenuation 
• Permittivity variations 

over time and space 
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Distance and Depth  
Sensors in WUSN applications are buried in Topsoil layer [10] 

11 

[10] A. R. Silva and M. C. Vuran. “Development of a Testbed for Wireless Underground Sensor Networks”. In: EURASIP Journal on Wireless 
Communications and Networking 2010 (2010).  

5 cm 

25 cm 

 76 cm 

 121 cm 



Frequency Variations 

• Frequency dependent path loss [11] 

• Wave number in  soil 
• Channel capacity 
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EM Waves in Soil 13 
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The Indoor Testbed 18 

              
           

             
   

• Wooden Box 
• Dimensions:        

100" x36" x 48" 
• 90 Cubic Feet of Soil 

Drainage 
Pipes Gravel 

Soil Placement, Packing 
and Saturation 



The Indoor Testbed 19 

              
           

             
   

Antenna 
Placement 

• Final outlook with watermark sensors and 
monitor 

• Overhead drying lights 



Soil Moisture in Indoor Testbed (Silt Loam) 20 

• Matric forces (adsorption and capillarity) 
• Soil Matric Potential 

Wet Soil 

Dry Soil 



Antenna Layout 21 

Indoor Testbed  



Outdoor Testbed 22 



VNA (Vector Network Analyser ) Measurements 
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Model Validation  
Silt Loam 
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Difference of 
Measured and 
Modeled 
Components 
 
DW: 10.2% 
LW:  7.3% 
RW: 7.5% 



Model Validation – Three Soils 26 

Silt Loam 

Sandy Soil  

Silty Clay Lom 

Sandy soil has low 
attenuation 
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Coherence BW of the UG Channel 
418 kHz as communication distance increases to 12m 
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Silty Clay Loam 



Impact of Soil Moisture Variations 
 • Bound water and Free 

water 
• Water contained in the 

first few particle layers 
of the soil 

• Strongly held by soil 
particles 

• Reduced effects of 
osmotic and matric 
forces [14] 
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Low SM 

High SM 

Silt Loam 



Impact of Soil Moisture Variations 
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Silt Loam 

Wet Dry 



Attenuation With Frequency 
• Higher frequencies 

suffer more 
attenuation 

• Customized 
Deployment to the 
soil type and 
frequency range 
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Cognitive Radio Solutions 
 
Adjust operation frequency, 
modulation scheme,  
and transmit power [14] 

[14]. Dong and M. C. Vuran. “Impacts of soil moisture on cognitive radio underground networks”. In: Proc. IEEE 
BlackSeaCom. Batumi, Georgia, July 2013. 

Silty Clay Loam 



Conclusion 32 

 
 

Soil Type 

Mean Excess Delay RMS Delay Spread Path Loss 
Distance Distance Distance 

50 cm  1 m 50 cm 1 m 50 cm 1 m 
mu sig mu sig mu sig mu sig 

Silty Clay 
Loam 

34.7 2.44 38.05 0.74 25.67 3.49 26.89 2.98 49 dB 52 
dB 

Silt Loam 34.66 1.07 37.12 1.00 24.93 1.64 25.10 1.77 48 dB 51 
dB 

Sandy Soil 34.13 1.90 37.87 27.89 27.89 2.76 29.54 1.66 40 dB 44 
dB 
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Silty Clay Loam Silt Loam Sandy Soil 
Distance Distance Distance 

1 m 1 m 1 m 
α  Ʈ N α Ʈ N α Ʈ N 

Direct -90 18-28 3 -103 15-23 2 -87 11-19 4 

Lateral -80 30-40 2 -82 26-43 3 -63 22-45 5 

Reflected -91 41-47 2 -94 47-59 4 -70 47-61 6 
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