

The Observation Record Length Necessary to Generate Robust Soil Moisture Percentiles

TRENT FORD & QING WANG DEPARTMENT OF GEOGRAPHY & ENVIRONMENTAL RESOURCES, SOUTHERN ILLINOIS UNIVERSITY

> **STEVEN QUIRING** DEPARTMENT OF GEOGRAPHY, TEXAS A&M UNIVERSITY

Soil Moisture Mapping

- Water resource management, drought monitoring/forecasting, flood forecasting, etc.
- Large-scale monitoring necessitates standardization/normalization
- Volumetric water content percentiles widely used to evaluate/display largescale soil moisture conditions

8 The North American Soil Moisture Database: Development and Applications

Ensemble MOSAIC NOAH SAC VIC Boundaries Rivers Legend

Soil Moisture Mapping

- Efforts to assemble and homogenize *in situ* datasets for scientific community
- Observation datasets do not have a consistent record length, most <20 years
- Period of record sufficient to produce a stable distribution from which to generate percentiles?
- Seek to determine the record length necessary to generate stable soil moisture percentiles from daily soil moisture observations

Soil Moisture Data

- 13 stations with continuous, mostlycomplete 15+ year record
- 2 stations (Canada) with continuous, mostly-complete 13-year record
- Surficial (5 10 cm), middle (20 30 cm), and deeper (50 75 cm) depths

Methods

- From 15-year record, select *n* years of daily volumetric water content (cm³ cm⁻³) data
- Generate a distribution based on n years of data; note the 1st, 2nd, 3rd quartiles & 5th & 95th percentiles
 - Repeat the process 300x using bootstrapping procedure
- Increase the number of years (*n*) by 1 and repeat

Carried this out at each station, each measurement depth (3 total), and for each calendar month

Methods

- For each condition (station, depth, month), we determine the number of years (n) after which no discernable change is detected
- Anderson-Darling test is used to determine significant differences between the distribution using n years and the distribution using n+1 years
- The value of n used to generate the distribution after which no significant change (based on A-D test) occurs is determined to be sufficient to represent the 15+ year soil moisture climatology and generate stable percentiles

Methods

- Distributions "converge" after 5 5th % 8 years, after which no significant differences exist (A-D test) 25th %
- In this case, 5 years of data is sufficient to estimate a distribution representative of the entire 15-year record

July 20 cm soil moisture – Little River, GA (SCAN)

Results

1 st Quartile	4.0 years
2 nd Quartile	3.4 years
3 rd Quartile	3.9 years
5 – 10 cm	3.7 years
20 – 30 cm	3.9 years
60 – 75 cm	4.2 years

 6+ observation record years necessary for stable percentiles in only 10% of conditions tested The number of observation record years deemed sufficient for generating a stable distribution, separated by quartile, measurement depth, and calendar month.

Results

5 – 10 cm	4.9 years			
20 – 30 cm	5.5 years			
60 – 75 cm	5.2 years			
5 – 10 cm	3.7 years			
20 – 30 cm	4.4 years			
60 – 75 cm	5.1 years			

 6+ observation record years necessary for stable percentiles in 30% of 5th percentile conditions and 15% of 95th percentile conditions The number of observation record years deemed sufficient for generating a stable distribution, separated measurement depth, and calendar month.

Stable Extremes – Drought Monitoring

- Drought monitoring based on percentiles at least 5% of observations are "extreme drought" regardless of record length
- Randomly select n data years and calculate 5th percentile, separately for each calendar month
- Compute % of daily observations from the entire record that is ≤ respective 5th percentile value
 - Repeat process 300x (bootstrapping)
- Increase *n*+2, repeat the entire process
- Track the percent of the entire data record that is classified as "extreme drought" based on the changing 5th percentile value

Stable Extremes – Drought Monitoring

Average number of "extreme drought" days as a function of the number of years used to determine the 5th percentile threshold.

SOIL MOISTURE PERCENTILES – MOISST 2016

Summary

- Recent advent of datasets dramatically improve spatial extent to which we can monitor soil moisture
- The lack of a 30+ year *in situ* soil moisture record at most stations precludes solid understanding of the true anomaly of moisture conditions
- Important to understand the observation record length necessary to generate a stable distribution from which *in situ* soil moisture can be contextualized
- Use of 13 17 year record as "truth" or "climatology" is a significant limitation

Conclusions

- Sufficient record length ranges between **3 & 15 years**
- Majority of conditions demand **3 6 year** record
 - Longer records necessary for 1st & 3rd quartiles than the median
 - Longer records necessary for deeper measurement depths
- Extremes demand **4 8 year** record
- Important implications for soil moisture drought monitoring with relative short records

Acknowledgements: Mike Palecki, Jesse Bell, Ronnie Leeper

			Soil Texture	Soil Texture	Soil Texture			
Network – Station	State/Province	Sensor Type	(5 – 10 cm)	(20 – 30 cm)	(50 – 60 cm)	Land Cover	Measurement Depths (cm)	Data Range
ARM – Lamont	Oklahoma	Heat dissipation	Clay	Clay	Clay	Pasture	5, 25, 60	1997 – 2012
ARM – Pawhuska	Oklahoma	Heat Dissipation	Sandy Loam	Sandy Loam	Sandy Loam	Grassland	5, 25, 60	1997 – 2012
Fluxnet Canada –Borden	Ontario	Water content reflectometer	N/A	N/A	N/A	Mixed Forest	5, 20, 50	1998 – 2011
Fluxnet Canada – Old Aspen	Saskatchewan	Water content reflectometer	Loam	Sandy Clay Loam	Sandy Clay Loam	Aspen Forest	7.5, 15-30, 30-60	1997 – 2009
Oklahoma Mesonet – Acme	Oklahoma	Heat dissipation	Sandy Loam	Sandy Clay Loam	Sandy Clay Loam	Pasture	5, 25, 60	1998 – 2013
Oklahoma Mesonet – Beaver	Oklahoma	Heat dissipation	Loam	Clay Loam	Clay Loam	Scrubland	5, 25, 60	1998 – 2013
Oklahoma Mesonet – Bixby	Oklahoma	Heat dissipation	Sandy Loam	Silt Loam	Silt Loam	Grassland	5, 25, 60	1998 – 2013
Oklahoma Mesonet – Byars	Oklahoma	Heat dissipation	Sandy Loam	Sandy Clay Loam	Sandy Clay Loam	Grassland	5, 25, 60	1998 – 2013
Oklahoma Mesonet – Goodwell	Oklahoma	Heat dissipation	Clay Loam	Clay Loam	Clay Loam	Scrubland	5, 25, 60	1998 – 2013
SCAN – Fort Assiniboine	Montana	Impedance	Loam	Clay Loam	Loam	Pasture	5, 20, 50	1998 – 2014
SCAN – Little River	Georgia	Impedance	Loamy Sand	Loamy Sand	Loamy Sand	Grassland	5, 20, 50	2000 – 2014
SCAN – Mahantango Creek	Pennsylvania	Impedance	Loam	Silt Loam	Loam	Grassland	5, 20, 50	2000 – 2014
SCAN – Mandan	North Dakota	Dielectric Impedance	Silt Loam	Silt Loam	Silty Clay Loam	Grassland	5, 20, 50	1998 – 2014
SCAN – Nunn	Colorado	Dielectric Impedance	Sandy Loam	Sandy Loam	Sandy Loam	Pasture	5, 20, 50	1998 – 2014
SCAN – Sheldon	Nevada	Dielectric Impedance	Loam	Loam	Loamy Fine Sand	Scrubland	5, 20, 50	1997 – 2014

SOIL MOISTURE PERCENTILES – MOISST 2016