Using in situ soil moisture sensors to calibrate a cosmic-ray neutron probe

Andres Patrignani – Kansas State University Tyson E. Ochsner – Okláhoma State University Mike Cosh – USDA-ARS Beltsville, MD

#	Station	Distance (m)	Depths (cm)	Start record	Sensor
1	COSMOS	0	Variable (0-50)	21-Jul-2010	³ He
2	MOISST A	7	5, 10, 20, 50, 90	11-May-2010	CS229-L
3	MOISST B	203	5, 10, 20, 50, 90	11-May-2010	CS229-L
4	MOISST C	70	5, 10, 20, 50, 90	11-May-2010	CS229-L
5	MOISST D	256	5, 10, 20, 50, 90	11-May-2010	CS229-L
6	JFSP 4	490	5, 10, 20, 50	13-Apr-2012	CS655
7	JFSP 5	230	5, 10, 20, 50	20-Apr-2012	CS655
8	Oklahoma Mesonet	396	5, 25, 60	10-May-1996	CS229-L

When using the COSMOS...

Straight forward: Retrieve the volumetric water contents from the COSMOS website (Level 3 data).

Custom calibration: Retrieve the volumetric water contents from the COSMOS website (Level 2 corrected fast neutrons).

http://cosmos.hwr.arizona.edu/

<u>Straight forward</u>: Retrieve the volumetric water contents from the COSMOS website (Level 3 data).

<u>Custom calibration</u>: Retrieve the volumetric water contents from the COSMOS website (Level 2 corrected fast neutrons).

http://cosmos.hwr.arizona.edu/

Marena in situ testbed Stationary COSMOS

Current stationary COSMOS calibration method

Fig. 4 from Dong et al., 2013. Calibrated shape-defining function for the first MOISST survey (3 June).

Fig. 9 from Hawdon et al., 2014. Calibration functions for the Tullochgorum site

Can we use more than five years of data from in situ stations to to calibrate the COSMOS?

Create distance- and depth-specific weights for every time step (daily)

Ko€hli, M., M. Schro€n, M. Zreda, U. Schmidt, P. Dietrich, and S. Zacharias (2015), Footprint characteristics revised for field-scale soil moisture monitoring with cosmic- ray neutrons, Water Resour. Res., 51, 5772–5790, doi:10.1002/2015WR017169.

- The Mesonet station has little influence on the footprint average VWC.
- The 5-cm sensor of the Marena Mesonet station predominates the VWC for the station.

 $\theta = B_0 + B_1 N + B_2 N_0 (EVI)$

Corrected weighted footprint => RMSE = 0.052 cm³ cm⁻³ Current VWC => RMSE = 0.13 cm³ cm⁻³ Corrected VWC from Coopersmith et al., 2014 => 0.02 cm³ cm⁻³

Final remarks

- Footprint VWC: pooled average VWC was similar to the weighted average.
- The new footprint average using the framework proposed by Kohli et al., 2015 helps minimizing arbitrary choices and provides a framework to incorporate all sources of information.
- Information from in situ phenocams and vegetation indexes from MODIS may have the potential to correct for vegetation water content.

Solution for vegetation corrections when using the rover?