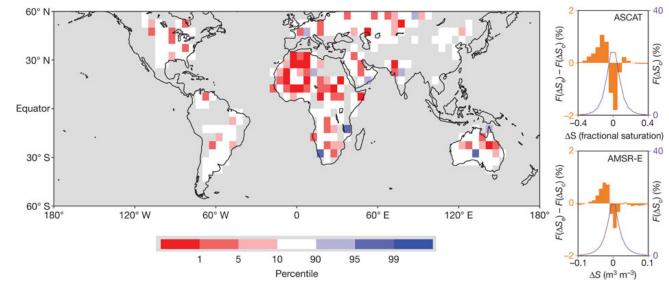


Applying Multiple, Diverse Sources of Soil Moisture to Better Understand Soil Moisture-Precipitation Coupling in the Central United States

TRENT FORD¹, BALBHADRA THAKUR², ROHIT JOGINEEDI², STEVEN QUIRING³, ADAM HOUSTON⁴, AJAY KALRA²


¹DEPARTMENT OF GEOGRAPHY & ENVIRONMENTAL RESOURCES, SOUTHERN ILLINOIS UNIVERSITY ²DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING, SOUTHERN ILLINOIS UNIVERSITY ³DEPARTMENT OF GEOGRAPHY, OHIO STATE UNIVERSITY ⁴DEPARTMENT OF EARTH & ATMOSPHERIC SCIENCES, UNIVERSITY OF NEBRASKA-LINCOLN

Soil Moisture – Precipitation Coupling

Land-atmosphere coupling strength (JJA), averaged across AGCMs

Impact of soil moisture on precipitation is largest in semi-arid regions, mostly positive (Koster *et al.* 2004)

Afternoon convective precipitation falls preferentially over dry soils, models show opposite (Taylor *et al.* 2012)

Soil Moisture – Precipitation Coupling

Larger Issues

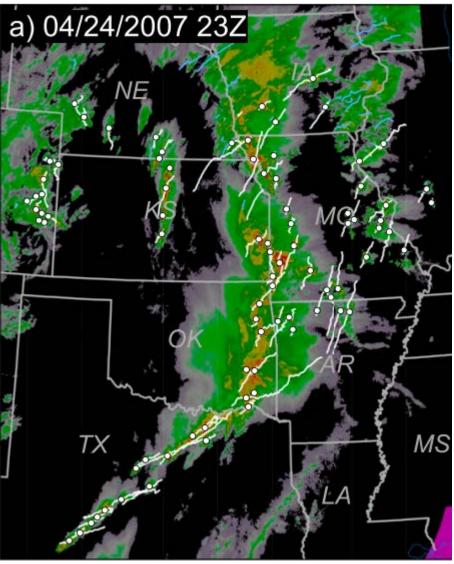
- Both dry- and wet-soil mechanisms exist to initiate convection
- Models tend to wet-soil mechanisms, poor convective schemes

However...

- Majority of observation-driven analyses uses AMSR-E soil moisture
- Previous methods have not adequately addressed the issue of convective forcing (i.e., local vs. synoptic)
- Regions are assumed to exhibit either positive coupling OR negative coupling

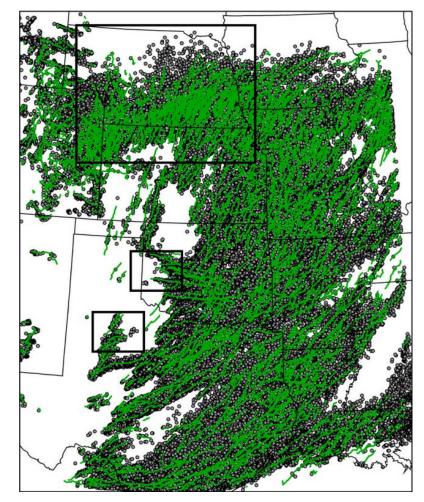

Project Objectives

- 1) Evaluate whether deep, moist convection initiation occurs preferentially over wet or dry soils using a variety of soil moisture products (including SMAP)
- 2) Evaluate how these preferences (wet/dry) vary over space and time
- 3) Determine how soil moisture heterogeneity and gradients influence initiation of deep, moist convection


Convective Thunderstorms – ThOR

(ThOR) algorithm

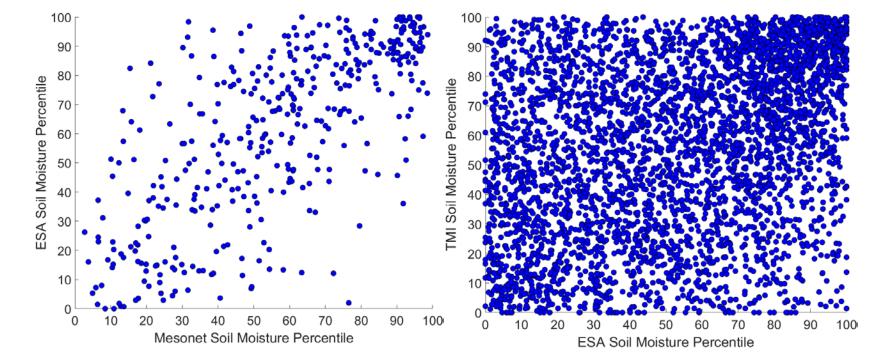
(Houston et al. 2015) JAS



Ellipse

Soil Moisture

- **AMSR-E** (L3, C and X bands), 2003 2010, 56 km resolution
- ESA Soil Moisture CCI, 1992 2013, 0.25° resolution
- **TRMM TMI** (L3, X band), 1999 2014, 0.25° resolution
- **SMAP** (L3 Passive), 2015 present, 36 km resolution
- **OK Mesonet** (station within grid cell), 2000 present



ThOR events in 2007.

Current analysis from 2005 – 2007, focus on May – September, afternoon precipitation events

Event-to-Event Correspondence

- Considerable inter-dataset differences in SM percentiles
- Better correspondence between ESA and Mesonet

Correlation	ESA	ТМІ	Correlation	ESA	ΤΜΙ	AMSR-E
ТМІ	0.34		ΤΜΙ	0.40		
AMSR-E	0.30	0.35	AMSR-E	0.41	0.44	
			Mesonet	0.72	0.45	0.42

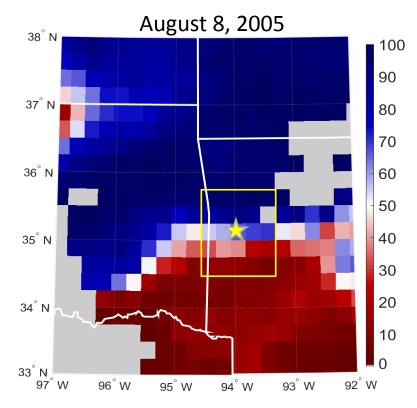
Soil moisture percentile correlation tables with (left) all events (n > 9500) and (right) Oklahoma events (n > 400) Event-to-Event Correspondence

- TMI is wetter than ESA, AMSR-E
- Wet/dry: percent differences are all > 50%

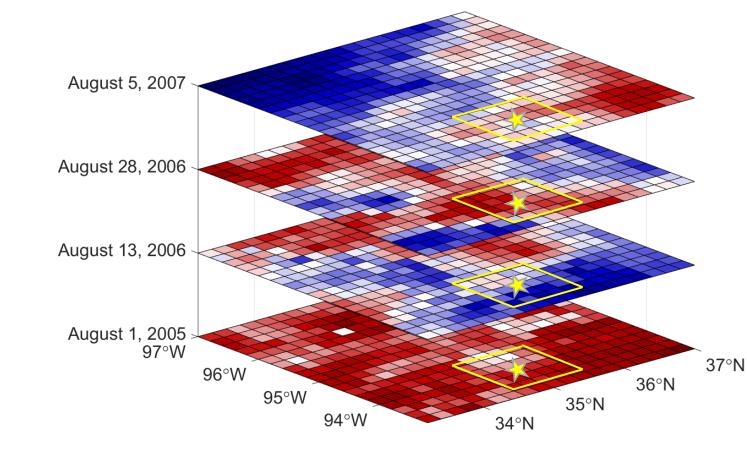
% Wet Agreement	ESA	TMI
ТМІ	71%	
AMSR-E	63%	61%
% Dry Agreement	ESA	ΤΜΙ
% Dry Agreement TMI	ESA 54%	ΤΜΙ

Difference	ESA – TMI	TMI – AMSR-E	ESA – AMSR-E
	-0.030	0.070	0.005

Event-to-Event Correspondence


- All products show better wet event agreement with Mesonet
- ESA has highest overall agreement (73%) and fewest large errors, AMSR-E has lowest bias

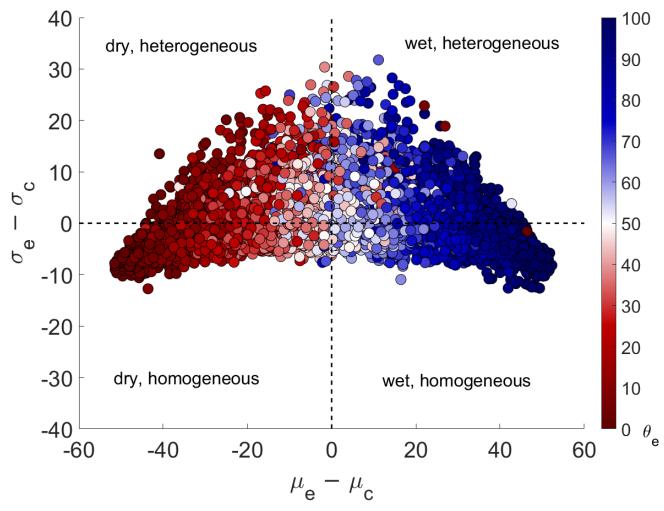
% Wet Agreement	ESA	TMI	AMSR-E
Mesonet	80%	78%	72%


% Dry Agreement	ESA	ΤΜΙ	AMSR-E
Mesonet	67%	56%	59%

Difference	ESA	TMI	AMSR-E
Mesonet	-0.042	-0.060	0.004

Soil Moisture Spatial Variation

Find soil moisture percentile underlying ThOR event initialization (θ_e). Compute 5° × 5° region mean soil moisture (μ_e) and standard deviation (σ_e).



Compute climatological soil moisture mean (μ_c) and standard deviation (σ_c) of 5° × 5° region. Climatology based on all days of the calendar month in which the event occurred.

SOIL MOISTURE-PRECIPITATION COUPLING – MOISST 2017

Soil Moisture Spatial Variation

- Relative homogeneity increases with relative wetness/dryness
- Absolute wetness/dryness of soil moisture underlying ThOR events related to the relative wetness/dryness of the region

ESA soil moisture (θ_e) underlying ThOR events plotted in dual region-mean (μ_e), region-variability space (σ_e). μ_e and σ_e are standardized by their respective climatological means.

Summary

- Hundreds of thousands of convective storm events in the central U.S., 2005 present
- Remote sensing soil moisture intercomparison:
 - Decent correspondence between datasets (r ~ 0.3 0.5, % agreement ~ 50% 80%)
 - TRMM TMI shows wet preference (bias?)
 - ESA closest matches nearest Mesonet station
 - Suggests wet/dry preference could be somewhat dataset-dependent
- Soil moisture spatial patterns:
 - Climatologically, events tend to occur over dry (wet) soils when the surrounding region is dry (wet)
 - Events tended to occur over drier (wetter) soils when the surrounding region was dry (wet), more heterogeneous

Next Steps, Challenges

- Getting more data
- Separating weakly-forced events (hopefully automated)
- Finalizing framework for assessing soil moisture spatial patterns/gradients
 - Incorporating storm movement, surface and upper-atmosphere winds
- Quantitatively determining dataset dependency of wet/dry preferences
 - Replicating past studies