The Soil Moisture Active Passive Marena Oklahoma In Situ Sensor Testbed (SMAP-MOISST): Design and Initial Results

Michael H. Cosh¹, Tyson E. Ochsner², Lynn McKee¹, Jingnuo Dong², Jeffrey Basara³, Steven R. Evett⁴, Christine Hatch⁵, Eric Small⁶, Susan Steele-Dunne⁷, Marek Zreda⁸

¹USDA-ARS-Hydrology and Remote Sensing Laboratory, Beltsville, MD
²Dept. of Plant and Soil Sciences, Oklahoma State University
³School of Meteorology, Oklahoma Climatological Survey, University of Oklahoma
⁴USDA-ARS-Crop Production Research Laboratory
⁵Department of Geosciences, University of Massachusetts-Amherst, Amherst, MA
⁶Department of Geological Sciences, University of Colorado-Boulder
⁷Department of Civil Engineering and Geosciences, Delft University of Technology
⁸Department of Hydrology and Water Resources, University of Arizona
SMAP Marena Oklahoma In Situ Sensor Testbed

Site Design
• Four Base Installations
• Common depths of 5, 10, 20, 50, 100 cm, with some sampling at 2.5 cm with Hydra.
• Base station sensors
 o Stevens Water Hydra Probes (6)
 o Delta-T Theta Probes (5)
 o Decagon EC-TM probes (5)
 o Sentek EnviroSMART Capacitance Probes (4)
 o Campbell CS615/CS616 TDRs (5)
 o CS 229-L heat dissipation sensors (OK Mesonet) (5)
 o Acclima Sensor (5)

<table>
<thead>
<tr>
<th>Site A</th>
<th>Site B</th>
<th>Site C</th>
<th>Site D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>Base</td>
<td>Base</td>
<td>Base</td>
</tr>
<tr>
<td>GPS</td>
<td>ASSH</td>
<td>GPS</td>
<td>GPS</td>
</tr>
<tr>
<td>COSMOS</td>
<td>Passive DTS</td>
<td>CRN</td>
<td></td>
</tr>
<tr>
<td>ASSH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDR systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flux System</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Installation in May 2010
• Monthly Sampling
 o Vegetation Collection
 o Gravimetric Sampling
 o Theta Probe Sampling

• Intensive Observations
 o High Density Sampling
 o Soil Profiles
Project Planning begins October 2009

Installation and deployments

- Base Stations installed May 2010
- GPS installed in June 2010
- COSMOS installed July 2010
- Passive DTS installed October 2011
- SMAPVEX11, June 2011, PALS flights/COSMOS rover.
- Flux Tower installed October 2011
- Burn Study Winter 2012
- Additional UAVSAR flights October 2012
- AirMoss Validation October 2012
<table>
<thead>
<tr>
<th>Sensor</th>
<th>Factory Listed Accuracy</th>
<th>Bias w/ factory calibration</th>
<th>RMSE factory calibration</th>
<th>RMSE soil specific calibration</th>
<th>Failure Rate over 3 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theta</td>
<td>0.01</td>
<td>0.014</td>
<td>0.030</td>
<td>0.028</td>
<td>0 out of 20</td>
</tr>
<tr>
<td>Hydra</td>
<td>0.01-0.03</td>
<td>0.020</td>
<td>0.040</td>
<td>0.032</td>
<td>0 out of 24</td>
</tr>
<tr>
<td>ECTM</td>
<td>0.03</td>
<td>0.076</td>
<td>0.081</td>
<td>0.036</td>
<td>8 out of 20</td>
</tr>
<tr>
<td>CS-616</td>
<td>0.025</td>
<td>-0.023</td>
<td>0.073</td>
<td>0.063</td>
<td>1 out of 20</td>
</tr>
<tr>
<td>Trime</td>
<td>0.01-0.03</td>
<td>0.005</td>
<td>0.042</td>
<td>0.023</td>
<td>0 out of 6</td>
</tr>
<tr>
<td>Acclima</td>
<td>0.01</td>
<td>0.074</td>
<td>0.080</td>
<td>0.025</td>
<td>9 out of 20</td>
</tr>
<tr>
<td>CS-229</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 out of 20*</td>
</tr>
<tr>
<td>Enviro-SMART</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 out 15**</td>
</tr>
</tbody>
</table>
Comparison of the three CRN 5 cm installations which are in close proximity

<table>
<thead>
<tr>
<th>5 cm</th>
<th>Site 1</th>
<th>Site 2</th>
<th>Site 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSD</td>
<td>Site 1</td>
<td>0</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>Site 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Site 3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r</td>
<td>Site 1</td>
<td>1</td>
<td>0.855</td>
</tr>
<tr>
<td></td>
<td>Site 2</td>
<td>1</td>
<td>0.922</td>
</tr>
<tr>
<td></td>
<td>Site 3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
SMAP Marena Oklahoma In Situ Sensor Testbed
CRN Hydras at 100 cm depth
SMAP Marena Oklahoma In Situ Sensor Testbed
Sites A-D Hydras at 5 cm depth
SMAP Marena Oklahoma In Situ Sensor Testbed
CDFs of Site Averages by Sensor at 5 cm
SMAP Marena Oklahoma In Situ Sensor Testbed
CDFs of Site Averages by Sensor at 50 cm
SMAP Marena Oklahoma In Situ Sensor Testbed
Sensor to Sensor Average Comparison

CS616 vs. Hydra

[Graph showing comparison between CS616 and Hydra]
Hydra vs. Sentek at 10 cm
SMAP Marena Oklahoma In Situ Sensor Testbed
Sensor to Sensor Average Comparison

<table>
<thead>
<tr>
<th>Sensor</th>
<th>2.5 cm</th>
<th>5 cm</th>
<th>10 cm</th>
<th>Variable Depth</th>
<th>2.5 cm</th>
<th>5 cm</th>
<th>10 cm</th>
<th>Variable Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-616</td>
<td>0.110</td>
<td>0.140</td>
<td></td>
<td></td>
<td>0.036</td>
<td>0.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydra</td>
<td>0.048</td>
<td>0.062</td>
<td>0.079</td>
<td></td>
<td>0.021</td>
<td>0.035</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>Theta</td>
<td>0.058</td>
<td>0.063</td>
<td></td>
<td></td>
<td>0.030</td>
<td>0.039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acclima</td>
<td>0.027</td>
<td>0.053</td>
<td></td>
<td></td>
<td>0.030</td>
<td>0.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentek</td>
<td></td>
<td>0.178</td>
<td></td>
<td></td>
<td></td>
<td>0.064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECTM</td>
<td>0.047</td>
<td>0.055</td>
<td></td>
<td></td>
<td>0.032</td>
<td>0.043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trime</td>
<td>0.083</td>
<td>0.085</td>
<td>0.110</td>
<td></td>
<td>0.026</td>
<td>0.032</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>CS229</td>
<td>0.089</td>
<td>0.091</td>
<td></td>
<td></td>
<td>0.038</td>
<td>0.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPSR</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSMOS</td>
<td>0.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.035</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SMAP Marena Oklahoma In Situ Sensor Testbed
Some Conclusions

• Installation practices and procedures should be standardized

• Calibration is critical for all sensors.

• Scaling (representativeness) also critical for all sensors.

• Raingage records are important for erroneous readings and troubleshooting.

• Accuracies of < 0.04 m3/m3 are achievable with a variety of sensors to field scales.

• Mixing of sensors within or between domains will cause variation at the fringes of the moisture conditions.
Install/Replace Acclima sensors

Install Campbell Scientific CS655/625

Perform temperature tests for Hydra sensors

Perform a study on portable soil moisture sensors

Continue with AIRMOSS cooperation
HAPPY BIRTHDAY
SMAP Marena Oklahoma In Situ Sensor Testbed
Variability at the Surface 0-5 cm

*BEAREX08 Transect Data
Cosh et al., 2012