Soil moisture estimation using Passive DTS: Theory and field application

Jianzhi Dong, Susan C. Steele-Dunne, Tyson E. Ochsner, Christine Hatch, John Selker, Scott Tyler, Michael H. Cosh, and Nick van de Giesen.
Content

• Background
 - DTS and soil moisture
 - Key challenges in Passive DTS

• Improved Passive DTS

• Data assimilation in Passive DTS

• Conclusion and future work
Background

Distributed temperature sensing (DTS)

Temporal resolution: < 1min
Spatial resolution: < 1m

~5 cm
~10 cm
~15 cm
Background

Distributed temperature sensing (DTS)

Temporal resolution: < 1min
Spatial resolution: < 1m

~5 cm
~10 cm
~15 cm
Background

Passive DTS

- Soil heat transfer depends on soil moisture

- Soil moisture determines soil thermal property
Background

Passive DTS

- Steele-Dunne et al (2009): Use T observation at 3 depths -> diffusivity -> moisture

- Challenges:
 Two soil moisture might be retrieved
 Very sensitive with cable separation distances
 Assume moisture/thermal property profile is uniform
Content

• Background

• Improved Passive DTS
 ⇒ Soil moisture selection
 ⇒ Estimating cable separation distances
 ⇒ Including soil thermal property profile

• Data assimilation in Passive DTS

• Conclusion and future work
Improved Passive DTS
Selecting “correct” soil moisture estimates

J. Dong et al., submitted to WRR
Improved Passive DTS

Cable separation distance estimation

Use temperature amplitude analysis to determine cable separation distance:

- Estimated cable separation distance, synthetic experiment.
- Estimated cable separation distance in real cable data along a 61m transect.

J. Dong et al., submitted to WRR
Improved Passive DTS
Importance of considering vertical heterogeneity in soil profile

Synthetic Experiment

J. Dong et al., submitted to WRR
Improved Passive DTS

Impact of soil texture uncertainty on estimated diffusivity (Synthetic experiment)

J. Dong et al., submitted to WRR
Improved Passive DTS

Estimated diffusivity and soil moisture anomalies at SMAP MOISST

Gray line/dots: soil diffusivity/moisture anomaly at each meter of cable
Black circle: median
Content

• Background
• Improved Passive DTS
• Data assimilation in Passive DTS
• Conclusion and future work
Data assimilation & DTS

Ensemble Kalman Filter (EnKF)

\[Y(t)^{a} = Y(t) + K(t)(T_{obs} - T_{f}) \]

\[K(t) = C_{YM} \left(C_{M} + R_{e} \right)^{-1} \]
Data assimilation & DTS

Ensemble Kalman Filter (EnKF): Soil Moisture Profile
Data assimilation & DTS
Using data assimilation to design DTS experiments

RMSE in Soil Moisture Estimates

![Graph showing RMSE in Soil Moisture Estimates with different depth levels and EnOL comparison.](image-url)
Content

• Background
• Improved Passive DTS
• Data assimilation in Passive DTS
• Conclusion and future work
Conclusions and future work

• We improved Passive DTS, and tested it using real and synthetic DTS data.

 ◦ Non-unique soil moisture estimates is distinguished using a simple method
 ◦ Cable separation distance can be estimated using amplitude analysis
 ◦ Including soil thermal property profile information improves moisture estimates

• We demonstrated data assimilation might be useful for Passive DTS

 ◦ Improves entire profile
 ◦ Stable and capable to account for large uncertainties.

• We will test and apply DA approach in real data.
Thank you!