Solution for homework \# 2

1. A cylindrical soil sample of 3.85 cm diameter and 10.00 cm height weights 201.13 g . The sample is then oven dried at $105{ }^{\circ} \mathrm{C}$ until a constant weight, being 177.75 g , is reached. Assuming the particle density of $2.65 \mathrm{~g} / \mathrm{cm}^{3}$ and a density of water $1.00 \mathrm{~g} / \mathrm{cm}^{3}$:

Calculate
> The bulk density of the soil sample
$>$ Gravimetric and volumetric moisture content
> Porosity
$>$ Equivalent depth of water contained in the soil sample

Solution

Volume of soil sample, V_{t}

$$
V_{t}=\frac{\pi * \mathrm{D}^{2}}{4}=\frac{\pi *(3.85)^{2}}{4} * 10.00 \mathrm{~cm}=116 \mathrm{~cm}^{3}
$$

Bulk density of soil sample, ρ_{b}

$$
\rho_{b}=\frac{M_{s}}{V_{t}}=\frac{177.75 \mathrm{~g}}{116 \mathrm{~cm}^{3}}=1.53 \mathrm{~g} / \mathrm{cm}^{3}
$$

Gravimetric water content, ω

$$
\omega=\frac{M_{w}}{M_{s}}=\frac{(201.13 g-177.75 g)}{177.75 g}=\frac{23.38 g}{177.75 g}=0.1315 \mathrm{~g} / \mathrm{g}
$$

Volumetric water content, θ

$$
\theta=\omega * \frac{\rho_{b}}{\rho_{w}}=0.1315^{g} / \mathrm{g} * \frac{1.53^{g} / \mathrm{cm}^{3}}{1.00^{g} / \mathrm{cm}^{3}}=0.201 \mathrm{~cm}^{3} / \mathrm{cm}^{3}
$$

Porosity, f

$$
\mathrm{f}=\left(1-\frac{\rho_{b}}{\rho_{s}}\right) * 100 \%=\left(1-\frac{1.53^{g} / c m^{3}}{2.56^{g} / c m^{3}}\right) * 100 \%=42.3 \%
$$

Equivalent depth of water,

$$
=\theta * \mathrm{z}=0.201 \mathrm{~cm}^{3} / \mathrm{cm}^{3} * 10.00 \mathrm{~cm}=2.01 \mathrm{~cm}=20.1 \mathrm{~mm}
$$

2. From the previous question, before oven drying how much water do we need to bring the soil water content to $0.35 \mathrm{~m}^{3} / \mathrm{m}^{3}$?
Solution
$\theta_{i}=0.201 \mathrm{~cm}^{3} / \mathrm{cm}^{3} ;$ And $\theta_{f}=0.35 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$
$\Delta \theta=0.15 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$

Change in equivalent depth of water $=0.15 \mathrm{~cm}^{3} / \mathrm{cm}^{3} * 10.00 \mathrm{~cm}=1.5 \mathrm{~cm}=15 \mathrm{~mm}$

Total amount of water needed $=1.5 \mathrm{~cm} * \frac{\pi * \mathrm{D}^{2}}{4}=17 \mathrm{~cm}^{3}$ (= 17 ml of water)
3. Calculate the soil water storage in mm for a $25^{\prime \prime}$ deep soil profile in which the A horizon is 10 " thick and has a volumetric water content of $0.25 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ and the B horizon is $15^{\prime \prime}$ thick and has a volumetric water content of $0.35 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$.

Solution:

Soil water storage in the soil profile, S
$\mathrm{S}=\left(\theta_{A} * \mathrm{Z}_{A}\right)+\left(\theta_{B} * \mathrm{Z}_{B}\right)$
$S=\left(0.25 \mathrm{~cm}^{3} / \mathrm{cm}^{3} * 10 * 25.4\right)+\left(0.35 \mathrm{~cm}^{3} / \mathrm{cm}^{3} * 15 * 25.4\right)$
$\mathrm{S}=64 \mathrm{~mm}+130 \mathrm{~mm}=194 \mathrm{~mm}$
4. Calculate the average volumetric water content after rainfall event for a 68 cm deep soil profile which had an average volumetric water content of $0.27 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ before getting 6.4 cm of rain. Assume 28% of the rain was lost to interception and there were no other losses.

Solution

$\theta_{f}=0.27 \mathrm{~cm}^{3} / \mathrm{cm}^{3}+\frac{(1-0.28) * 6.4 \mathrm{~cm}}{68 \mathrm{~cm}}=0.34 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$

